Lagrangian-Dual Functions and Moreau--Yosida Regularization

نویسندگان

  • Fanwen Meng
  • Gongyun Zhao
  • Mark Goh
  • Robert de Souza
چکیده

In this paper, we consider the Lagrangian dual problem of a class of convex optimization problems. We first discuss the semismoothness of the Lagrangian-dual function φ. This property is then used to investigate the second-order properties of the Moreau-Yosida regularization η of the function φ, e.g., the semismoothness of the gradient g of the regularized function η. We show that φ and g are piecewise C and semismooth, respectively, for certain instances of the optimization problem. We establish a relationship between the original problem and the Fenchel conjugate of the regularization of the corresponding Lagrangian dual problem. We also find some instances of the optimization problem whose Lagrangiandual function φ is not piecewise smooth. However, its regularized function still possesses nice second-order properties. Finally, we provide an alternative way to study the semismoothness of the gradient under the structure of the epigraph of the dual function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Moreau-Yosida Regularization of the Vector k-Norm Related Functions

In this paper, we conduct a thorough study on the first and second order properties of the Moreau-Yosida regularization of the vector k-norm function, the indicator function of its epigraph, and the indicator function of the vector k-norm ball. We start with settling the vector k-norm case via applying the existing breakpoint searching algorithms to the metric projector over its dual norm ball....

متن کامل

Sufficient Optimality Conditions for the Moreau-yosida-type Regularization Concept Applied to Semilinear Elliptic Optimal Control Problems with Pointwise State Constraints∗

We develop sufficient optimality conditions for a Moreau-Yosida regularized optimal control problem governed by a semilinear elliptic PDE with pointwise constraints on the state and the control. We make use of the equivalence of a setting of Moreau-Yosida regularization to a special setting of the virtual control concept, for which standard second order sufficient conditions have been shown. Mo...

متن کامل

On Second-order Properties of the Moreau-Yosida Regularization for Constrained Nonsmooth Convex Programs

In this paper, we attempt to investigate a class of constrained nonsmooth convex optimization problems, that is, piecewise C2 convex objectives with smooth convex inequality constraints. By using the Moreau-Yosida regularization, we convert these problems into unconstrained smooth convex programs. Then, we investigate the second-order properties of the Moreau-Yosida regularization η. By introdu...

متن کامل

A superlinearly convergent algorithm for large scale multi-stage stochastic nonlinear programming

This paper presents an algorithm for solving a class of large scale nonlinear programming problem which is originally derived from the multi-stage stochastic convex nonlinear programming. Using the Lagrangian-dual method and the Moreau-Yosida regularization, the primal problem is neatly transformed into a smooth convex problem. By introducing a self-concordant barrier function, an approximate g...

متن کامل

The U-lagrangian of a Convex Function

At a given point p, a convex function f is differentiable in a certain subspace U (the subspace along which ∂f(p) has 0-breadth). This property opens the way to defining a suitably restricted second derivative of f at p. We do this via an intermediate function, convex on U . We call this function the U-Lagrangian; it coincides with the ordinary Lagrangian in composite cases: exact penalty, semi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2008